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Abstract

Nowadays images are not always created by humans, they can also

be generated by AI. This leads to the question: Where does this image

come from? being more and more important. In this thesis, we build a

framework that not only determines if an image is AI-generated or not

but also which model was used to generate the fake images. For this,

we use the models ResNET-101, DenseNET-121, and MobileNETV3.

We also analyze which models generate the images that are the hardest

to detect as fake. In the end, we analyze how the models decide if an

image is AI-generated or not. To do this we use SHapley Additive

exPlanations (SHAP).
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1 Introduction
In 2021 OpenAI made their Artificial Intelligence (AI) DALL-E public, which
can generate images from text [41]. Currently, in 2024 we are on the third
generation of DALL-E [42] and a lot of other AI art generators exist for
example: Adobe Firefly [25], Generative AI from Getty Images [24] and
Midjourney [39]. This shows how rapidly the field of generative AI has grown
over the last few years. With this evolution, two issues are clearer, the first
is that AI Art is harmful to artists [31] and the second is that training
data and copyright is a tricky subject. This is the case because some of
the training data is scraped from the internet [50]. Meta for example uses
images from public accounts to train their AI [38]. At the Bloomberg TEC
Summit [51], the Meta representative said: "Our data advantage is really
the publicized images that have been shared on Facebook and Instagram as
well as the publicized text. So we do not train on private stuff we do not
train on stuff that people shared with their friends. We do train on things
that are public". Because of this issue with the training data, it is important
to not only differentiate between AI-generated images and real images but
also which generator created the picture. The individual ethical reasons are
not the only grounds to consider, which generator made an image but also
the possibility of legal vulnerability. For example, The US Copyright Office
is considering revising the law surrounding generative AI [38]. This is the
motivation for the AI detector developed in the context of this thesis. This AI
detector not only determines if an image is AI-generated or not but also goes
more into detail about which model was used to generate the image. We use
the models DenseNet-121, ResNet-101, and MobilenetV3 for the detection of
AI-generated images. To determine which model generated an image we use
two versions of MobileNETV3. We also analyze how the models decide if an
image is AI-generated or not with the help of SHapley Additive exPlanations
(SHAP).
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1.1 Research question

AI-generated images bring issues with them. That is why the overall research
question of the Bachelor Thesis is: How can we determine which model
generated an image?

This question will be answered by analyzing the following sub-questions:

• How can we detect AI-generated images?

• What models generate images that are the hardest to identify?

• How does the algorithm decide whether an image is AI-generated?

1.2 Thesis Structure

The following is an overview of the rest of the thesis.
In Chapter 2 we introduce the most important model types that are used

for AI image generation. In this chapter, we also explain what techniques
are currently used to detect AI-generated images. For that, we look at the
literature in this field.

Chapter 3 introduces the framework of our AI detector and the deep
learning models we use for it. In the second half of this Chapter, we explain
the methodology we use and how we use it.

In Chapter 4 we explain the datasets we use and how we preprocessed
them.

In Chapter 5, we explain how we build the deep-learning framework of
this thesis. First, we explain how the models are implemented. Then we look
at the individual levels of the AI detector and evaluate them. At the end, we
explain how we evaluated the overall framework and what the limitations of
this framework are.

Chapter 6 explores how the models decide if an image is AI-generated or
not. For that we use SHAP. In this chapter, we explain how we implemented
SHAP and what the results are.

In Chapter 7 we summarize everything and talk about how the research
can be furthered in the future.
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2 The Current State of the Art in AI Image
Detection

In this chapter, we look at the current state of the art in AI image generation
and detection and compare the different approaches. For Human AI detection
we limited ourselves to papers about pictures not including videos, because
we use images in the context of this thesis and videos could be detected
differently from images. For papers about the ability of machines we also
only use papers about image detection and not video detection and we only
use papers where at least a part of the training dataset consists of images
that are completely AI-generated. The reason for that is that there is a
chance that a method that can detect if an image has part of itself changed
by AI can not detect if an image is completely AI-generated.

2.1 The model types that are behind AI images

There are currently two algorithms that are used for the majority of AI image
generation. Generative adversarial networks (GAN) and Diffusion models.

According to Ali et al. [2] and Baraheem et al. [4] a GAN consists of two
neural networks: a generator and a discriminator. The generator is trained
to generate images and the discriminator is trained to identify if an image is
AI-generated. The discriminator checks the image created by the generator if
the discriminator identifies the image as AI-generated the generator produces
a new image. This is then repeated, till the discriminator accepts the image.

As explained by Dhariwal et al. [8] and Ho et al. [20] the first step to train
a diffusion model is to make an image noisy. This is done by stepwise adding
Gaussian noise to an image. The gradual adding of noise is the forward
process of the training. When the image is noisy the reverse process starts.
The reverse process works by learning variables and denoising a noisy image
step by step.

According to Ahmad et al. [1] the strengths of GANs are their sample
quality and inference speed. The weaknesses of GANs are their training
stability and mode diversity. The strength of Diffusion models is, according to
Ahmad et al. [1], their sample quality, training stability, and mode diversity,
and their weakness is inference speed.

2.2 Humans’ Ability to Detect AI-Generated Images

Pocol et al. [45] conducted a survey with 260 members which tried to dif-
ferentiate between AI-generated images and real ones. There were 10 real
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images and 10 AI-generated ones. The result is an average image classifica-
tion accuracy of 0.61. This is the average of the accuracy per image. The
images in this study were all human faces and it was recommended to the
participants to not overthink the answer. Also, heavily photoshopped images
counted as real. Pocol et al. [45] concludes the survey results with: "These
results demonstrate that people are not good at separating real images from
fake ones, easily allowing the propagation of false and potentially dangerous
narratives." It was also analyzed why participants classified an image as fake
and the number one keyword that was used is eyes. To get the keywords not
only the answers of the correctly classified images were used so the results
of the keywords could still lead to a false classification. However, the paper
does analyze AI-generated eyes in detail and finds that the two signs for AI-
generated eyes are heterochromia and white pixels around the eyes. Also, AI
has problems generating realistic teeth.

A similar study was done by Groh et al. [17] in which they asked partici-
pants to find the image that was influenced by AI. In this study, two images
were shown to the participants. One was real and the other one had some-
thing removed with the help of AI image manipulation. Before going to the
next image the participants were told which one was AI manipulated. The
result was a mean identification accuracy of 0.86. The images are randomly
selected and it was analyzed that 0.78 of the first images were classified cor-
rectly and 0.88 of the tenth images were classified correctly. This suggests
that humans can learn how to identify AI-manipulated images. Important
to mention is that not all participants classified 10 or more images because
the number was not standardized but for the comparison between the first
and tenth participants only the sample who answered at least ten was taken.
Also, one unique IP address was counted as one unique participant. This sug-
gests that it is easier for humans to detect images that are AI-manipulated
than images that are AI-generated or that it is easier to detect the AI image
out of two than to decide if one is AI-generated.

A study done by Rössler et al. [49] shows that these differences can
also come from different quality and manipulation methods. In this study,
the images were taken out from videos that have been manipulated at first
with different methods and then post-processed to appear in different video
qualities. In this study, 204 people participated most of them being computer
science university students. This study showed each participant 60 images.
The result shows that the quality has a big impact with the average accuracy
for raw videos being 0.6896 and the accuracy for low-quality videos being
0.5873. The accuracy of the different methods used to manipulate the images
also shows a big difference, the reason for that is probably that some methods
only add small semantic changes compared to other methods.
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A study where the participants had no time limit to decide if the im-
age was AI-generated or not was done by Lu et al. [36]. The participants
consisted of 50 people, who achieved an accuracy of 0.6134. Objects are
classified as the least correct and multiperson pictures are the most correct.

2.3 Machines’ Ability to Detect AI-Generated Images

In this section, we explain how machines can be utilized to identify AI-
generated images. For that, we first look at the different deep learning
methods and then at other machine methods. The results of all the machine
methods can be found in Table 1. This Table includes the model that is used,
the reference to the corresponding paper, the availability of the dataset, the
type of images in the dataset, the accuracy, and the F1-score where available.
Most papers use a dataset that is partly available because the real images
are available and the fake images are produced specifically for their paper
and then not made public. Sometimes the real part of an image is a subset
of a publicly available dataset but it is not clear which images are included
in the subset. The availability is set to partly as well in this case. If neither
the accuracy nor the F1-score are available the paper is not included in the
table. The methods are explained in more detail in the following subsections.

2.3.1 Deeplearing Methods

There are multiple ways in which deep learning can be used for AI image
detection.

The Original Image The original images can be used for training deep
learning models. This means that the images are only preprocessed with the
preprocessing function of the model. This is for example done by Kusuma
et al. [31], who trained the model specifically to detect AI-generated anime
images. The results of this model can be seen in Table 1. The best accuracy
of this method with this specialized dataset is 0.972.

Baraheem et al. [4] use this method as well. Here the dataset spans
multiple categories but the fake images are only generated by GAN architec-
tures with different tasks like image-to-image synthesis and not by Diffusion
models. The best accuracy in this experiment is 1.00 with EfficientNETB4.
The results from the other models can be seen in Table 1.

A CNN was also trained by Wang et al. [60], who trained ResNET-50
to distinguish between AI and Real images. In this paper, Wang et al. [60]
checked the influence of data augmentation on the robustness of this model
by only training the model with images generated by one generator. We do
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not have the accuracy but the average precision is between 0.882 and 1.00 for
different models. Important to mention here is that the average precision of
1.00 was on the generator the model was trained with and that all the other
generators are also GAN models. The results show that data augmentation
improves generalization.

The DFT of an Image The discrete Fourier transform (DFT) of an image
can be used to train a deep learning model as done by Alkishri et al. [3].
According to Alkishri et al. [3] and Guarnera et al. [18], the DFT uses
a formula to make frequencies visible. These frequencies are different for
AI-generated images and real images. Figure 1 shows the average of the
DFT spectrum. This image is taken from [18]. DFT makes it possible to
identify AI-generated images. The average of the DFT looks different for
each generator. They mostly differentiate from each other with the position
and strength of the light lines. The dataset Alkishri et al.[3] use consists
of human faces and the best accuracy in this experiment is 0.99. Table 1
compares different models used to differentiate AI-generated images and real
images on different datasets.

It is not clear if Guarnera et al. [18] use the original images or the DFT of
the images to train the deep learning model, because DFT is explained but
never mentioned in their framework. The dataset in [18] consists of multiple
categories including for example human faces and animals. The best result
is an accuracy of 0.9904.

The DCT of an image The Discrete Cosine Transform (DCT) also makes
the frequencies of an image visible but in a different way. The DCT of
AI-generated images shows a difference from Real images so Poredi et al.
[46] train a self-build Convolutional Neural Network (CNN) and reach an
accuracy of 0.9688. The goal of this work is to make a model that detects
AI images specialized for Social Media content.

Inter-pixel correlation To make sure the deep learning model generalizes
better Zhong et al. [62] train it with the Inter-pixel correlation. This is done
by using a method Zhong et al. [62] call Smash&Reconstruction. What this
method does is shown in Figure 2 which is taken from [62]. The images are
smashed and then the parts of the image are split into poor texture and rich
texture. Out of the original image, two reconstructed images are produced
one with rich texture and one with poor texture. This way the semantic
information of the image is broken, which makes sure the model does not
train on the semantic information. High pass filters are then put over the

15



Figure 1: Average of the DFT spectrum [18]

reconstructed image. The images are used to train a self-built neural net-
work. This method reached an average accuracy of 0.8985 over 17 individual
datasets each generated by one generator. This method performs this well
even though the images that were used for training only consisted of images
generated by ProGAN. The Accuracy of the ProGAN dataset was even 1.00.
This proves that this method is very good at generalizing while training.

2.3.2 Other Methods

1D Power Spectrum A method that builds on the DFT method is used
by Durall et, al. [10], who form the Azimuthal Average of the DFT of an
image. This Average produces the 1D Power Spectrum which is then used to
train SVM, Logistic Regression, and K-Means with different datasets. SVM
and Logistic Regression reach a test accuracy of up to 1.00 and K-Means
performs the worst but still reaches up to 0.96 test accuracy.

1There are currently only subsets of this dataset available. But [5] states: "Due to
multiple reports of inconsistent metadata/files, Danbooru2021 has been taken offline until
I either figure out the problem or make a fresh release". So the dataset could become
available again
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Model Reference Available Type Accuracy F1-
score

DenseNet-121 [18] partly mult. cat.
(multiple
categories)

0.9768 0.92

DenseNet-121 [3] available human faces 0.92 0.92
DenseNet121 [4] partly mult. cat. 0.97 0.97
EfficientNET-b4 [18] partly mult. cat. 0.8996 0.76
EfficientNetB4 [4] partly mult. cat. 1.00 1.00
EfficientNET-b7 [18] partly mult. cat. 0.9661 0.89
InceptionV3 [4] partly mult. cat. 0.98 0.98
InceptionResNetV2 [4] partly mult. cat. 0.96 0.96
K-Means [10] partly human faces 0.96 -
Logisitc Regression [10] partly human faces 1.00 -
MaxViT [4] partly mult. cat. 0.89 0.89
MixConv [4] partly mult. cat. 0.94 0.94
MobileNetV2 [31] partly Anime 0.968 0.971
MobileNetV3 [31] partly Anime 0.972 0.974
ResNet-18 [18] partly mul. cat. 0.965 0.89
ResNet-34 [18] partly mul. cat. 0.9761 0.92
ResNet-50 [18] partly mul. cat. 0.9818 0.94
ResNet50 [4] partly mult. cat. 0.91 0.91
ResNet-101 [18] partly mul. cat. 0.9893 0.96
ResNet101 [4] partly mult. cat. 0.95 0.95
ResNet152 [4] partly mult. cat. 0.92 0.92
ResNEXT-101 [18] partly mult. cat. 0.9729 0.91
Self-Build [62] partly mult. cat. 0.8958 -
Self-Build [46] partly mult. cat. 0.9688 -
SVM [10] partly human faces 1.00 -
VGG16 [3] available human faces 0.99 0.99
VGG19 [4] partly mult. cat. 0.94 0.94
ViT-B16 [18] partly mult. cat. 0.9904 0.96
Xception [4] partly mult. cat. 0.97 0.97

Table 1: Comparative Analysis of Model Results AI vs Real
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Figure 2: Illustration of Smash&Reconstruction[62]

2.4 Detection of the Generator that generated an image

It is also possible to detect which model was used for generating the image
as done by Guarnera et al. [18]. This approach works by having multiple
levels. The first level is trained to detect if the image is AI-generated or not.
The second is to differentiate between GAN-generated images and Diffusion
model-generated images. The third level is then to detect what model was
used for generating the picture. This level consists of two models one of
which differentiates between all the GAN models and one that differentiates
between all the Diffusion models. The team achieved an accuracy of over 90%
with these architectures overall and at the individual levels. Table 2 shows
the results of the overall framework. This means the test data runs through
all levels. The data that was used in this paper spans multiple categories. In
this case, the models were all trained on the same data.
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Model Reference Available Type Accuracy F1-
score

ResNet-18 [18] partly mult. cat 0.9606 0.98
ResNet-34 [18] partly mult. cat 0.9621 0.98
ResNet-50 [18] partly mult. cat 0.9601 0.97
ResNet-101 [18] partly mult. cat 0.9782 0.98
ResNEXT-
101

[18] partly mult. cat 0.952 0.98

DenseNet-
121

[18] partly mult. cat 0.972 0.99

EfficientNET-
b4

[18] partly mult. cat 0.8794 0.9

EfficientNET-
b7

[18] partly mult. cat 0.9341 0.95

ViT-B16 [18] partly mult. cat 0.9533 0.98

Table 2: Comparative Analysis Results Generator Differentiation

3 Research method
In this chapter, we explain the architecture of our AI detector including the
models that we use. We also explain the methodology we use to build an
AI detector that can differentiate between the models that generated the
images.

3.1 Framework

The Framework is the construct of deep learning models that differentiates
between real images and the different generators.

3.1.1 Models

The AI detector built in the context of this thesis consists of deep learning
models. The type of deep learning model we use are CNNs. As explained by
O’Shea et al. [43] a CNN consists of self-optimizing neurons that learn. The
use cases of CNNs are mostly pattern recognition within images. The unique
feature of CNNs is that their neurons are organized in three dimensions:
height, width, and depth, which is the reason why this type of Neural Network
is used for image-centered use cases. An example of a CNN architecture can
be seen in Figure 3 which is taken from [43]. The convolutional layers that
can be seen in the Figure is the layer that learns. The task of a pooling layer
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Figure 3: Example of a CNN architecture [43]

is to reduce the dimensionality by scaling down the activation map without
losing depth volume. The important part of the fully-connected layers is that
each neuron is connected to all neurons of the preceding and the following
layer, but not connected to a neuron on the same layer.

MobileNetV3 MobileNet is a series of networks that were developed with
the computational limitation of mobile devices taken into consideration [22].
As described by Howard et al.[21] the family of MobileNets consists of the
versions MobileNet, MobileNetV2, MobileNetV3-Small, MobileNetV3-Large
and MobileNetV4 1. Each generation improves the model in another way.
MobileNet uses depthwise separable convolution. This enhances the effi-
ciency. MobileNetV2 builds on this as explained in [21]: "...depthwise sep-
arable convolution to substantially improve computation efficiency". Mo-
bileNetV3 is built for the optimal accuracy and latency for mobile computer
vision architectures. MobileNetV3 is the one used here because it performed
the best in [31]. It is not clear whether the small or the large version is used
in this paper, thus we are using both models here to compare them and see
which one performs better for this use case.

ResNet-101 ResNet-101 is a residual network with 101 layers. Residual
networks were developed to solve a big problem from deep learning models:
after a certain number of layers, the accuracy of the models saturates at first
and then degrades. The reason for that is not overfitting but that if the input
goes through too many layers information can get lost [23]. According to He
et al. [19] Residual networks tackle this problem by adding identity mapping
layers. The building block of residual learning works the following way: An
identity or input is put through weight layers and in between the layers in the

1is the newest generation and came out this year (2024) [47].)
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ReLu activation function. The ReLu activation function is f(x ) = max(0,x)
[35]. This means that the negative input of this function is always set to at
least zero so the output can never be negative. The output of these layers is
then added to the original identity. This addition to the original identity is
what differentiates residual Networks from other deep learning models.

DenseNet-121 DenseNet-121 is a Densely Connected Convolutional Net-
work (DenseNet) with 121 layers. According to Huang et al. [23], DenseNet
wants to solve the vanishing gradient problem from deep learning models
but it uses a different technique than ResNet. DenseNets solution is to not
only use the output of the prior layer of the model but all the layers coming
before and its feature map. The difference between ResNets and DenseNets
method is that ResNets uses summation to combine features and DenseNet
concatenates them.

3.1.2 Levels

To not only differentiate between AI-generated images and real images but
also between the different generators the framework is split into multiple
levels which can be seen in Figure 4. This structure is the same as Guarnera
et al. [18] use. The framework consists of 3 levels and the first one is AI
vs Real, which identifies the AI-generated images. Level two then further
differentiated the AI-generated images into images generated by GAN or
Diffusion models. Level three then splits these two into the individual models.
We train four different models on level 1 and two models for levels 2 and 3.

3.2 Action Research

The work described in this thesis is guided by the Action Research [6] method-
ology, which distinguishes itself because of its flexibility. According to Check-
land et al. [6] this flexibility is because in Action Research three elements
can change during the research. These elements are the area of concern,
particular linked ideas, and the methodology. These elements need to be
defined before the process starts so that it is possible to analyze should there
be changes. In our case, the elements do not change during the process, be-
cause change is not needed to answer our research question. Our definition
for the particular linked ideas are deeplearning, AI detection, and AI image
generation, and our definition for the area of concern is the identification of
AI-generated images. Our methodology consists of a typical AR cycle. As
explained by Dickens et al. [9] the steps of this cycle can vary depending on
the project and do not always need to be followed statically as explained by
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Figure 4: Levels of the Framework

Dickens et al. [9]"Rather, it (action research) can go forward, backward, and
in all directions at once". Our approach is inspired by [15] and [34] with four
steps which are:

1. Plan

2. Act

3. Analysis

4. Reflect

These four steps are followed to build the overall framework and are done
on a smaller level in the action step for each level of the framework as seen
in Figure 5. The cycles are repeated till there seem to be no more ways to
improve the results with the resources of this bachelor thesis.

3.2.1 Plan

At first, the model framework is planned. The model consists of three levels:
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Figure 5: Methodology

1. AI vs Real

2. GAN vs Diffusion

3. Identify the Models

After we know which data is necessary we plan which data is used and how it
is preprocessed. Then we plan how each individual level is built. The levels
consist of deep learning models. Four models are chosen and compared to
see which performs the best. The first two models are types of MobileNetV3
which are also used in [31]. Version 3 performs the best in identifying the AI
images, but it is not mentioned if the Small or the Large version is used, so
we use both. The other model that we use is DenseNet-121 which performed
best in the overall framework in [18] with the metrics precision, recall, and
F1. The fourth model that we use is ResNet-101. This model performed
the same in recall as DenseNet-121 and the best in accuracy of the overall
framework also in [18]. The last part of the first planning sequence in the
cycle is planning the evaluation process. The metrics that are used for the
evaluation are accuracy, precision, recall, and F1-score. Also, a confusion
matrix is built to compare the models. The reason we use these metrics is
that they have been used in multiple papers including [31], [18], [4] and [3].
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3.2.2 Act

This step consists of smaller cycles for each level. At first, the model is
planned in more detail and fitted to the individual model. Then the model
is implemented. This is the act step. The model is evaluated in the analysis
step. The metrics that are used are as aforementioned accuracy, precision,
recall, F1-score, and a confusion matrix. Then the cycle is reflected on. In
the reflect step it is decided if the cycle is repeated or if the result is satisfying.
This decision takes two things into consideration. First of all, if the metrics
are over a certain threshold in our case 70 %, and secondly if there seems
to be a way to improve the model. The accuracy can for example be high
because of an imbalanced dataset where all the images are classified in the
same category. So the cycle begins again by planning how the dataset could
be improved. We repeat each of the cycles for the models between 10 and 20
times.

3.2.3 Analyis

The analysis consists of the evaluation of the overall framework. The levels
of the framework are already individually evaluated in the act cycle so that is
not repeated here. We used the same metrics as before so accuracy, precision,
recall, F1-score, and a confusion matrix.

To calculate the metrics we use the sklearn.metrics library [44]. For
the binary classifications, the functions accurracy_score, precision_score,
recall_score, and f1_score are used. The variable names that are used in
the formulas are tp for true positives, fp for false positives, tn for true neg-
atives, and fn for false negatives. The following formulas are analyzed with
the function inspect.getsource [44].

Accuracy = (tp + tn) / (tp + tn + fp + fn)
Precision = tp / (tp + fp)
Recall = tp / (tp + fn)
F1-Score = (2 * tp) / (2 * tp + fp + fn)

3.2.4 Reflect

In this step, the decision takes place if the cycle is repeated. The cycle starts
from the beginning if the results of the overall framework are not sufficient.
The results are not enough if the accuracy is not at least over 70 % percent.
Accuracy is not the only thing taken into consideration. Recall, precision,
and the F1-score also need to be over 70%. The confusion matrix is to see if
there are any anomalies in the result for example an imbalanced dataset. We
repeat the overall cycles three times for MobileNETV3-Large and two times
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for MobileNETV3-Small. There are not that many repetitions necessary here
because the individual levels are already optimized as well as possible in the
Act step.
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4 Data and Preprocessing
In this chapter, we explain, which datasets we used and how we preprocessed
them. We used two datasets to train the models both of them sourced from
Kaggle. The first one is ai-generated-images-vs-real-images (AIvsReal)[61].
The dataset consists of a total of 60,000 images. Half of them are AI-
generated and the other half are real images. The real images of this dataset
are from Pexels [56], Unsplash [57], and WikiArt [58] and the AI-generated
ones are from Stable Diffusion [55], MidJourney [39], and DALL-E [54]. The
license is MIT. The license text can be found in Appendix A. On Kaggle the
dataset is split into train and test data with a ratio of 80% and 20%. We put
all the data together in two folders AI and Real for further preprocessing.
The second dataset is called "ArtiFact: Real and Fake Image Dataset" (Ar-
tiFact) [48]. The dataset consists of a total of 2,496,738 images. This splits
into 964,989 real images and 1,531,749 fake images. The fake images were
generated by 25 generators and the real images were sourced from 8 different
sources. The dataset includes images from the categories: human, human
faces, animal, animal faces, places, vehicles, art, and other real-life objects.
The resolution of the images is 200x200. We do not use the whole dataset
because of computational limitations. The generators we use in this thesis
are BigGan, GauGAN, Glide, Latent Diffusion, ProGAN, ProjectedGAN,
Stable Diffusion, StarGAN, StyleGAN1, and StyleGAN2. Table 3 contains
the models we use, whether it is GAN or Diffusion model, and what license
they have. We use a random sample of 7,000 images from all the generators,
except for Glide because we only have 1,000 images available. 66,929 random
images of the real categories are chosen to keep the ratio. The images are
picked randomly by the random.sample() function from the random library,
which is a Python library that includes random functions for integers and
sequences [14]. The datasets we use as the real images are subsets of "Arti-
Fact: Real and Fake Image Dataset" [48]. The dataset is already split into
these subsets which include images from the datasets FFHQ, ImageNet, and
AFHQ. We form our subsets of these subsets by using the random.sample()
function. The corresponding licenses of these subsets are for FFHQ Cre-
ative Commons BY-NC-SA 4.0 license, for ImageNet Non-Commercial, and
for AFHQ Creative Commons Attribution-NonCommercial 4.0 International
Public. The texts to the licenses can be found in Appendix A.

Preprocessing The preprocessing for the AIvsReal model works by cut-
ting down the dataset. This is done by taking 7,000 images from each gen-
erator except for Glide which only has 1,000 images. The images are chosen
randomly. The images are then split into the ratios 70% training data, 15%
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Method Model Type License
BigGan GAN MIT License
GauGAN GAN Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 Inter-
national Public License

Glide Diffusion model MIT License
Latent Diffusion Diffusion model MIT License
ProGAN GAN Attribution-Noncommercial 4.0 Inter-

national
ProjectedGan GAN MIT License
Stable Diffusion Diffusion model Apache-2.0 License
StarGAN GAN MIT License
StyleGan1 GAN Creative Commons Public Licenses
StyleGan2 GAN Nvidia Source Code License

Table 3: Summary of Models

validation data, and 15% test data. The split is done using Algorithm 1. Af-
ter the split, the data is put in their respective folder in the folder structure
which can be seen in Figure 6. The images are moved with the os library,
which enables us to work on the operating system, and the pathlib library,
which provides functions to present filesystem paths correctly [12], [13].

We then resize the images to the size 224x224 for the models ResNet-
101 and DenseNet-121. We do not resize the images for the MobileNET
models, because it is not necessary for the further preprocessing and training
of the model. The individual images are preprocessed with the integrated
preprocessing functions of the models.

Preprocessing GANvsDiffusion The preprocessing for the GANvsDiffu-
sion level consists of cutting down the GAN images to 15,000 to have
the same number of images generated by Diffusion models and images
generated by GAN. The images are chosen with the random.sample()
function. The images are taken from the already-split folders so the
ratios remain the same with 70% training data 15 % validation data
and 15% test data. The images are distributed to the different folders
shown in Figure 7.

Preprocessing Differentiation GAN The preprocessing for the Differen-
tiation between the GAN images consisted of picking 7,000 images per
generator dataset. This is done with the random.sample() function.
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Algorithm 1 Split Algorithm
function split(path)

train 0.7
validation 0.15
test 0.15

images add(List of Images in the folder)
length length(images)

train_num length ⇤ train
test_num length ⇤ test
val_num length ⇤ validation

train_list random(train_num images from images)
images images� train_list

validation_list random(val_num images from images)
images images� val_list

test_list random(test_num images from images)
images images� test_list
return train_list test_list val_list
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Figure 6: Folder structure AIvs-
Real

Figure 7: Folder structure GAN-
vsDiffusion

Figure 8: Folder structure Gener-
ators Diffusion Models

Figure 9: Folder structure Gener-
ators GAN Models

The images are then put into their respective folder which can be seen
in Figure 9 again with the ratios 70-15-15.

Preprocessing Differentiation Diffusion Models For the Diffusion model
differentiation, we have three Diffusion models, Glide, Latent Diffusion,
and Stable Diffusion. The dataset only includes 1,000 Glide images. We
used 7,000 pictures each for Latent Diffusion and Stable Diffusion to
keep the training data big enough. The 7,000 images are chosen ran-
domly again. The images are split in the ratio 70-15-15 again into the
folders that can be seen in Figure 8
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5 Building the overall Framework
In this chapter, we explain how we implemented the models and analyze the
results.

5.1 Implementation of the models

The implementation is done on two laptops, because there is nothing avail-
able with more computational power, in the context of this thesis. One of
the laptops has an Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz 2.80 GHz
processor and has an installed RAM of 8.00 GB. The other laptop has an
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz processor and an
installed RAM of 16.00 GB. The models are implemented using Keras, which
is a deep-learning API [30]. It is used on top of TensorFlow, an open-source
deep-learning software library from Google [16]. Keras helps to define, train,
and deploy machine learning models [16].

At first, we clarify how the data batches are built. We use the class mode
categorical and shuffle the train batches and the validation batches. The test
batches are not shuffled. Then the pre-trained model is loaded. The model
is not pre-trained for our specific case but on the ImageNET dataset [59].
We use the softmax activation function because it simplifies using SHAP
and it makes adapting the code for the other levels easier. We compared it
with binary classification and the sigmoid activation function, but it did not
influence the result. The categories for the first level are AI and Real, for the
Second level GAN and Diffusion, and for the third level the generators. We
train all the layers of the models and use the categorical crossentropy loss
function with the accuracy metrics. Then we train the model for our specific
data and use case. The variables that we change during the training are:

learning rate The learning rates are chosen in comparison to each other
based on which performs the best. They vary for the different models
and datasets. The learning rate for the AIvsReal dataset is 0.0001
for the MobileNETV3-Large model. ResNet-101 and DenseNet-121
are mostly trained with a training rate of 0.00001 and then changed
to 0.000001 for the last epochs of training. The learning rate for the
ArtiFact dataset is 0.00001 for both models.

batch size We change the batch size during training depending on how the
accuracy shifts, we use a batch size between 1 and 10. MobileNET on
the AIvsReal dataset works with bigger batch sizes ranging between 4
and 10 than ResNet-101 and DenseNet-121 which both use a batch size
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of 3. For the ArtiFact dataset, we use a batch size of 3 which is smaller
than the batch size for the AIvsReal dataset.

steps per epoch The steps per epoch are adapted to the accuracy dur-
ing training with values between 18 and 50. The steps per epoch are
higher for ResNet-101 and DenseNet-121 with 20 steps per epoch than
for MobileNETV3-Large which used 18 steps per epoch. For the Arti-
Fact dataset, we use a higher steps per epoch value of 50 than for the
AIvsReal dataset.

epochs The epochs also differentiate between models and datasets. For
MobileNETV3-Large on the AivsReal dataset we need under 100 epochs
and for the ResNet-101 and DenseNet-121, we need around 100 epochs.
For the ArtiFact dataset, we need over 300 epochs for MobileNET mod-
els.

As seen above ResNet-101 and DenseNet-121 need values that need more
computational power. The training of the ArtiFact dataset also needs val-
ues that lead to the necessity of more computational power. In our case,
DenseNET-121 and ResNEt-101 are not learning the difference between AI
and Real in the ArtiFact dataset. Why this could be the case is discussed in
the next paragraph.

Discussion of the Differences in the Implementation. The reason
why MobileNETV3-Large is more computationally friendly than the other
models on the AIvsReal dataset is that this model is specialized to work on
mobile devices whereas the other models are specialized in improving the
performance not considering computational limitations. This is probably
also the reason why the ArtiFact dataset does not work with DenseNet-121
and ResNet-101. As stated above this dataset needs values that are more
computationally expensive. The combination of a dataset and models that
are resource-intensive does not work with our limitations.

5.2 Levels of the Framework

To differentiate between the methods used for image generation and not just
between AI and real we build a three-level framework which can be seen in
Figure 4 and is explained in Chapter 3. The first level is AI vs Real. The
following levels are to differentiate between GAN and Diffusion models. Level
3 depends on the result of level 2. There are two models for level 3. One
that differentiates between all the GAN models and one that differentiates
between all the Diffusion models.
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Model Dataset Accuracy Precision Recall F1-score
MobileNetV3-
Large

AIvsReal 0.924 0.8950 0.9607 0.9267

DenseNet-121 AIvsReal 0.9052 0.8886 0.9267 0.9072
ResNet-101 AIvsReal 0.9111 0.9011 0.9236 0.9122
MobileNetV3-
Large

ArtiFact 0.9238 0.9169 0.932 0.9244

MobileNetV3-
Small

ArtiFact 0.8776 0.8745 0.8816 0.8781

DenseNET-1212 ArtiFact 0.4389 0.4557 0.6282 0.5282
ResNET-1012 ArtiFact 0.4630 0.4743 0.6816 0.5593
MobileNetV3-
Large2

ArtiFact 0.4631 0.4770 0.7666 0.5881

MobileNetV3-
Small3

AIvsReal 0.5061 0.5031 0.9878 0.6667

MobileNetV3-
Large3

AIvsReal 0.5014 0.5007 0.9762 0.6619

Table 4: Results AIvsReal

5.2.1 AI vs Real

The first level of the overall framework distinguishes between AI-generated
images and real images. We use two different datasets and 4 different models
to compare how good the models are at detecting AI-generated images.

Evaluation and Results We evaluate the results by calculating the met-
rics of accuracy, precision, recall, and the F1-score. The values are calculated
using the respective function from the sklearn.metrics library.

Table 4 shows the results of the models on the different datasets. The
results are rounded to four decimal points. MobileNetV3-Large performs
the best on the AIvsReal Dataset with an accuracy of 0.9240 and an F1-
score of 0.9267. It is followed by ResNet-101 with an accuracy only slightly
worse of 0.9111. DenseNet-121 performed the best in recall with 0.9167.
When looking at the confusion matrices it is visible that both DenseNet-121
and ResNet-101 classify more fake images wrongly as real than real images
wrongly as fake. This is in contrast to MobileNETV3-Large which classifies
more real images as fake than fake images as real.

When the ArtiFact dataset is used MobileNETV3-Large performs better
2Trained on AIvsReal
3Trained on ArtiFact
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Model Accuracy Precision Recall F1-score

MobileNETV3-Large 0.9244 0.9377 0.9093 0.9233

MobileNETV3-Small 0.9007 0.9230 0.8742 0.8980

Table 5: Results GANvsDiffusion

than MobileNETV3-Small. The large version achieves an accuracy of 0.9238.
Both the MobileNETV3 version classified the wrong images pretty evenly
between real and fake which can be seen in Figure 13 and Figure 14.

We also tested the models with the dataset it was not trained with. Here
the results are between 0.4389 and 0.4631.

Discussion One reason MobileNetV3-Large could perform better than the
others is that the models are trained on mobile devices and the MobileNet
models are made to work on them. The results can differ depending on the
dataset. The reason for that could be the diversity of the dataset.

There are multiple reasons why the model performs so badly on the test
data of the dataset it was not trained on. One of them could be that the
model learns patterns that are not connected to whether the image is AI
or not. Another reason why the results are this bad could be that the fake
images are generated by different models. The only model that is used in
both datasets to generate images is Stable Diffusion but there could have
been a different version used.

5.2.2 GAN vs Diffusion

The second level of the framework distinguishes between images generated
by GAN and images generated by Diffusion models. We use MobileNetV3-
Large and MobileNETV3-Small. DenseNet-121 and ResNet-101 are not used
for this and the following level because of computational limitations.

As seen in Table 5 MobileNETV3-Large performs better in all the cate-
gories so if if the computational power is good enough MobileNETV3-Large
should be used. MobileNETV3-Large achieves values better than 0.9 in all
the categories whereas the recall of MobileNETV3-Small is 0.8742. This led
to the F1-score of MobileNETV3-Small also only being 0.8980. The confu-
sion matrices, that can be seen in Figure 15 and Figure 16 show that more
GAN images are classified wrong as Diffusion models than Diffusion models
being classified wrong as GAN images. This is the result of both models.
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Figure 10: MobileNETV3-Large AIvsReal

Figure 11: ResNet-101 AIvsReal

34



Figure 12: DenseNet-121 AIvsReal
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Figure 13: MobileNETV3-Large ArtiFact

Figure 14: MobileNETV3-Small ArtiFact
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Figure 15: GAN vs Diffusion MobileNETV3-Large

Figure 16: GAN vs Diffusion MobileNETV3-Small
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Modell Accuracy Precision Recall F1-score

MobileNETV3-Large 0.9214 0.94 0.92 0.92

MobileNETV3-Small 0.9148 0.92 0.91 0.91

Table 6: Results Models GAN models

5.2.3 Model differentiation

The last level consists of two models and depends on the outcome of the GAN
vs Diffusion level. One of the models differentiates between the GAN models
and the other one between the Diffusion models. We use the MobileNetV3
models because they are the most efficient model on a mobile device. For the
multi-class classification evaluation, the classification_report function is used
which gives us an overview of all the metrics. Precision, recall, and F1-score
are given per each category. We use the macro average for precision, recall,
and F1-score, which means all the classes are weighted the same. We also pro-
duce the confusion matrices with the metrics.ConfusionMatrixDisplay func-
tion. The matrices are then plotted with matplotlib. This library is a Python
library that can create visualizations that are static, animated, and interac-
tive [53].

GAN Model Differentation Table 6 shows the results of the differenti-
ation between the different GAN models. Precision, recall, and F1-score are
the macro averages. The results can be seen in Table 6. MobileNETV3-Large
performs better than MobileNETV3-Small in all the metrics. In Figure 17
we see that MobileNETV3-Large correctly predicts all the images generated
by the models, BigGAN, StarGAN. Out of all the image generators images
generated by StyleGAN2 are classified wrongly the most. 21.33% of wrongly
classified StyleGAN2 images are classified in StyleGan1 so they seem to gen-
erate images that are similar to each other. This can also be seen in Figure
18. The images that are classified wrongly in StyleGAN2 are mostly clas-
sified as StyleGAN1 again. MobileNETV3-Small does not classify all the
StyleGAN1 images correctly. Interestingly the falsely classified StyleGAN1
images are not classified as StyleGAN2 at all. So StyleGAN2 has a lot in
common with StyleGAN1 but not the other way around. Another reason
could be that the images generated by StyleGAN1 and StyleGAN2 can not
be clearly distinguished so they are all classified as StyleGAN1. Figure 17
and Figure 18 use abbreviations for better readability, their full names can
be found in Appendix B.
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Figure 17: GAN Generators-Large

Figure 18: GAN Generators Small
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Modell Accuracy Precision Recall F1-score

MobileNETV3-Large 0.928 0.93 0.92 0.92

MobileNETV3-Small 0.9209 0.92 0.9 0.91

Table 7: Results Models Diffusion Models

Diffusion Model Differentation As shown in Table 7 MobileNETV3-
Large performs better than MobileNETV3-Small with an accuracy of 0.928.
Both of the models achieve over 0.9 in all the metrics. The confusion matrices
that can be seen in Figure 19 and Figure 20 show that the wrongly classified
images from Latent Diffusion and Stable Diffusion are mostly classified wrong
for each other. This does not necessarily stem from them generating images
the most similar to each other but can come from Glide having fewer images
in the training data. There are otherwise no abnormalities in the confusion
matrices.

5.3 Evaluation and Comparison of the overall frame-

work.

We evaluated the overall framework by building a loop which can be seen in
Algorithm 2. This loop takes an image and puts it first through the AI vs
real model. If the image is classified as fake it will be predicted in the GAN
vs Diffusion model. If the image is predicted as Diffusion the image will be
classified further into the Diffusion models. If it is predicted as GAN the
classification continues between the different GAN models. At the end, we
have two arrays. One with the real labels and one with the predicted labels.
We then use the metrics.classifiation_report function to get the metrics for
this result and plot a confusion matrix. MobileNETV3-Large performs better
than MobileNETV3-Small with an accuracy of 0.81.

Stable Diffusion, StyleGAN1, ProjectedGAN, and GauGAN have the
most realistic images from the model’s perspective, images generated by these
models are classified as real the most.

This can be seen in Figure 21 and Figure 22. StarGAN is nearly classified
completely right from both of the models so images generated from StarGAN
seem to have something that makes them easily identifiable. Figure 21 and
Figure 22 use abbreviations for better readability, their full names can be
found in Appendix B.
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Figure 19: Confusion matrix Diffusion Models Large

Figure 20: Confusion matrix Diffusion Models Small
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Algorithm 2 The loop to evaluate the overall Framework
methodsTrue []
methodsPred []
pictures [list_of_pictures]
for all pic in pictures do

methodsTrue add(method)
testImage load_img(pic_path)
testImageArray  img_to_array(testImage)
testImageArrayPreprocessed preprocess_input(testImageArray)
testImageArrayDimension expand_dimensions(testImageArrayPreprocessed)
result predictAIvsReal(testImageArrayDimension)
if result=Real then

methodsPred add(method_Predicted)
else if result=Fake then

result_vs predictGANvsDiffusion(testImageArrayDimension)
if result_vs=Diffusion then

result_Diff  predictDiffusionModels(testImageArrayDimension)
methodsPred add(method_Predicted)

else if result_vs=GAN then
result_GAN  predictGANModels(testImageArrayDimension)
methodsPred add(method_Predicted)

end if
end if

end for=0
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Figure 21: Confusionmatrix Overall Framework Large

Figure 22: Confusionmatrix Overall Framework Small
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Modell Accuracy Precision Recall F1-score

MobileNETV3-Large 0.81 0.81 0.80 0.79

MobileNETV3-Small 0.76 0.77 0.75 0.74

Table 8: Results Overall Framework

5.4 Limitations

Our biggest limitation is the limited computational power of the two laptops,
we use to train the deep-learning models. This limited our possibility to train
certain models. It also made perfecting the models more complicated because
we could not use a bigger dataset for example.

The second limitation we had was our dataset. There was a limited
number of datasets available, where it is clear which image is generated by
which generator so for levels two and three of our framework we only had
this dataset available. The limitation of this dataset is that the ratios are
imbalanced. There are for example only 1000 images available from Glide.
This also leads to the second limitation of the dataset which is that although
the images are generated in the same categories they are not all generated
with the exact same quotes. An example of this would be that there are
two women faces one AI-generated one not, but the women look completely
different. This makes it harder to evaluate if the patterns the model finds are
related to the image being AI-generated or not. The model for example could
also find that AI-generated women’s faces have all blond hair because there
are no real women with blond hair in the training data. If the AI-generated
images would be generated based on a description of the real images this
would be less of a concern.
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Figure 23: Before Scaling Figure 24: After Scaling

6 Model Decision Analysis
This chapter explores how the model decides if an image is AI-generated or
not, for this SHAP [37] is used. SHAP is a Python package that helps to
analyze the choice a machine-learning model makes [37]. As explained by
Lundberg et al. [37] SHAP uses Shapley values from game theory, which are
used to figure out how to distribute the cost to the people who consumed the
service [52]. To explain a machine learning model the values are not people
but the attributes in the model [52]. In the case of images, the attributes are
pixels or areas in an image. These areas are analyzed on how they influence
the result.

6.1 Implementation

We use SHAP on the models MobileNETV3-Large, DenseNet-121, and ResNet-
101. These models are choosen because they are trained on the AIvsReal
dataset. We use this dataset because the SHAP implementation takes place
simultaneously with the training of the models on the ArtiFact dataset. The
reason for this is limited time. A random sample of images from the AIvs-
Real dataset is analyzed and then manually expanded where patterns are
expected.

At first, the images of the MobileNetV3-Large results are scaled to make
them more interpretable. Figure 23 shows an example image before scal-
ing and Figure 24 shows the same image after scaling. The preprocessing
functions from ResNet-101 and DenseNet-121 also influence the look of the
images but scaling them back influences the result of SHAP which can be
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Figure 25: ResNet SHAP result
preprocessed

Figure 26: ResNet SHAP result
unpreprocessed

Figure 27: Example for SHAP re-
sults

Figure 28: Example for SHAP re-
sults 7000

seen in the Figures 25 and 26. The preprocessed images are used because
these are the ones that are used by the model to make its prediction. Mul-
tiple results were compared with the MobileNETV3-Large results but the
rescaling did not influence the results so we use the rescaled version.

The masker is set to blur the background and the max evaluation value is
set to 7000. Max evaluation influences how many evaluations are done. This
value influences in how many areas the SHAP result is split. This can be seen
when comparing Figure 27 and Figure 28. The first one uses a smaller value
for max evaluation and the second one is 7000. In comparison to other values
7000 leads to the result that is the easiest for us to analyze and compare with
each other. Figure 27 shows a result for a SHAP explanation on our image
classification model AI vs Real. The label of this image is fake which means
the pink sections indicate that the image is fake and the blue ones indicate
that the image is real. The level of transparency shows how strongly the
pixels influence the result and their interpretation can be seen under the
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Figure 29: SHAP Result
DenseNet-121 1

Figure 30: SHAP Result ResNet-
101 1

Figure 31: SHAP Result
MobileNETV3-Large 1

images.

6.2 SHAP Results

In this chapter, we analyze SHAP results based on five examples. We do this
by comparing the results from different models on the same pictures.

6.2.1 SHAP Results Example 1

Figure 29, Figure 30 and Figure 31 show the results of SHAP on a fake
image. DenseNET-121 and ResNET-101 classify the picture correctly and
MobileNETV3-Large classifies the picture wrong. A sign that this image
is fake is found in a small logo on the left bottom corner. Next to the logo
DenseNet-121 and ResNet-101 find a lot of the pixels that influence the result
in the regions of the image that show car lights or building lights.
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Figure 32: SHAP Result
DenseNet-121 2

Figure 33: SHAP Result ResNet-
101 2

Figure 34: SHAP Result
MobileNETV3-Large 2

6.2.2 SHAP Results Example 2

Figure 32, Figure 33 and Figure 34 show the result of SHAP on a fake image.
All the models classified the image correctly. ResNet-101 and MobileNETV3-
Large both see most of the classifiers in the figure and the grass and not in the
darkness. DenseNet-121 focuses a lot on a region in the grass. Regions that
indicate that the image is fake in ResNet-101 indicate that the image is real
in MobileNETV3-Large like for example the bottom right corner. Another
region where this difference appears is in one of the hands of the fisher.
DenseNet-121 does not take these regions into consideration that much.
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Figure 35: SHAP Result
DenseNet-121 3

Figure 36: SHAP Result
ResNet-101 3

Figure 37: SHAP Result
MobileNETV3-Large 3

Figure 38: SHAP Result
DenseNet-121 4

Figure 39: SHAP Result
ResNet-101 4

Figure 40: SHAP Result
MobileNETV3-Large 4

6.2.3 SHAP Results Example 3

A sign that is used repeatedly to identify fake images are colour squares in
the bottom right corner. This can be seen in Figures 35 to 40. These squares
seem to be a good identifier of AI images in our dataset.
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Figure 41: SHAP Result
DenseNet-121 5

Figure 42: SHAP Result ResNet-
101 5

Figure 43: SHAP Result
MobileNETV3-Large 5

6.2.4 SHAP Results Example 4

Figures 41 to 43 show a real image that is classified correctly by all the
models. ResNet-101 considers the surroundings more than the elephants in
the picture whereas MobileNETV3-Large focuses on the elephants and only
a small part of the surroundings. DenseNet-121 takes nearly every region
into account. The sky and trees indicate the most that the image is real.
The grass and the elephant regions include the most part that speak for
the image being fake. ResNet-101 analyzes similar regions but the regions
that speak for and against the image being real are more scattered. There
is also again the case that DenseNet-121 and ResNet-101 classify the same
region exactly the opposite. DenseNet-121 classifies the region between the
elephant’s heads to speak for the image being real and ResNet-101 classifies
it as showing that the image is fake.

50



Figure 44: SHAP Result
DenseNet-121 6

Figure 45: SHAP Result ResNet-
101 6

Figure 46: SHAP Result
MobileNETV3-Large 6

6.2.5 SHAP Results Example 5

Figure 44 to Figure 46 show a real picture where all the models classified it
correctly. MobileNETV3-Large makes its decision based on a small region of
the woman in the painting. The regions DenseNet-121 and ResNet-101 look
at are more scattered. ResNet-101 concentrates more on the woman and less
on the surroundings. DenseNet-121 takes the surroundings also into consid-
eration. DenseNet-121 finds a lot of classifiers that signal against the image
being real in the face. ResNet-101 also takes the face into consideration. The
top half indicates that the image is real and the bottom half against it.

By comparing all the results, we can see that the models take different
regions into consideration in nearly all the images. Sometimes the same
region is taken into account but it speaks for the opposite class. The only
classifiers that is repeatedly taken as a sign that the image is fake are logos
or colored squares in the bottom-left corner.
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6.3 Important to take into consideration

Although the logos and squares are a good sign in our dataset this does not
mean it is a sign for AI-generated images. The logo and the squares need
to come from the training data so real images with these attributes need to
exist. In our case, the real data is not the training data from the models
but consists of real images where the copyright allowed them to be used in a
dataset on Kaggle [61]. So this can be taken into consideration but it needs
to be looked at in the context of the image. If an image from a website has
this website’s logo it should not be taken into consideration. If a person on
Instagram posts a picture and claims it as their own with one of these signs
it can be taken more into consideration but it still should not be the only
attribute that leads to a decision.
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7 Conclusion and further research
In this chapter, we summarize all the information from the thesis, by answer-
ing the research questions. Then we elaborate on how this research could be
continued in the future.

7.1 Conclusion

The research question of this thesis is: How can we determine which model
generated an image? This question is split into the sub-questions:

• How can we detect AI-generated images?

• What models generate images that are the hardest to identify?

• How does the algorithm decide whether an image is AI-generated?

To answer these questions we at first, analyzed how we can detect AI-
generated images. We saw that humans have problems distinguishing AI-
generated images from real ones with an image classification accuracy of 61
%. We also analyzed that deep learning models can be trained with the
original image, the DFT of an image, the DCT of an image, and the inter-
pixel correlation to identify AI-generated images. Another way to identify AI
images is to use the 1D Power Spectrum of an image with machine learning
models like SVM. We train deep-learning models with the original image to
detect fake images. The best model achieved an accuracy of 0.9238 on one
of our datasets.

To determine which model generated an image we build a 3-level frame-
work that at first finds all the AI-generated images. Then split these into
GAN and Diffusion models and finally split them into their generators. Each
level consists of a deep learning model trained specifically for this use case.
The overall model with the best overall accuracy of this framework achieved
0.81. The overall results show that StyleGAN 1, ProjectedGAN, and Sta-
bleDiffusion generate the images that are classified the most as real.

The SHAP results show us that every model has different indicators for
the differentiation between AI and Real images. Sometimes the same regions
on an image even indicate different models the complete opposite of each
other. There are some signs where the models agree like the color squares
in the bottom corner but there is a high probability that is more dataset-
dependent than AI-generated dependent.
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7.2 Further research

Computational power limitations Further research on the topic of this
thesis could be done by training ResNet-101 and DenseNet-121 with more
computational power. The computational power limited our ability to opti-
mize these two models and use them on the other framework levels.

Dataset In this thesis, we use two pre-existing datasets and only one to
train the overall framework. It would improve our ability to find patterns
in SHAP if we would have images that are as close to the real images as
possible. Also, the datasets could be increased with more Diffusion models.

Specialized Datasets Another thing that could supplement the research
conducted in this thesis is that the results of a one-categoric dataset could
be compared to our results with the multicategoric dataset. So for example,
the dataset only consists of human faces, to see if this influences the result.
The result could be better because the model can concentrate more on the
differences between AI-generated faces and real faces or worse because it does
not generalize as well.

Robustness Testing To build on this research it would be good to test the
results on their robustness. The results could be compared to other methods
of AI detection for example predictions with the DFT of an image this way
it could be said which method is the most robust.
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A Appendix -Citations of the Datasets
The AIvsReal dataset is from Tristan Zhang taken from kaggle from the
url: https://www.kaggle.com/datasets/tristanzhang32/ai-generated-images-
vs-real-images/data The following MIT license text is taken from

https://www.mit.edu/ amini/LICENSE.md which is the link that is con-
nected to the dataset on kaggle.

"Released under MIT License
Copyright (c) 2013 Mark Otto.
Copyright (c) 2017 Andrew Fong.
Permission is hereby granted, free of charge, to any person ob-
taining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, in-
cluding without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be in-
cluded in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE."

The Artifact dataset consists of multiple datasets combined with differ-
ent licenses taken from: https://www.kaggle.com/datasets/awsaf49/artifact-
dataset

The FFHQ dataset is made available under the Creative Commons BY-
NC-SA 4.0 license by NVIDIA Corporation [32]. This allows us to use this
dataset by naming changes we made. The biggest change we made is that
we only use a subset of it. We also have to give credit by citing their paper
[26]. The last point is that we have to distribute any derivative works under
the same license.
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The license text in [32] also states that each image has an individual
license, which can be found in the metadata. We are allowed to use all of
the images in our usecase and the links to the metadata can be found in the
following license text taken out of [32]:

The individual images were published in Flickr by their respec-
tive authors under either Creative Commons BY 2.0, Creative
Commons BY-NC 2.0, Public Domain Mark 1.0, Public Domain
CC0 1.0, or U.S. Government Works license. All of these licenses
allow free use, redistribution, and adaptation for non-commercial
purposes. However, some of them require giving appropriate credit
to the original author, as well as indicating any changes that were
made to the images. The license and original author of each im-
age are indicated in the metadata.
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
https://creativecommons.org/publicdomain/mark/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://www.usa.gov/copyright.shtml

The ImageNET dataset is made available under the Non-commercial li-
cense which allows us to use this dataset. The full dataset can be found at:
https://www.image-net.org/download.php

The AFHQ dataset is made available under the Creative Commons Attribution-
NonCommercial 4.0 International Public License, which allows us to use this
dataset for non-commercial purposes. The dataset was created in the context
of the paper [7]. This dataset can be found at:

https://github.com/clovaai/stargan-v2?tab=readme-ov-file. The only change
we made to this dataset is that we use a subset of it. The whole license text
can be found at: https://github.com/clovaai/stargan-v2?tab=License-1-ov-
filereadme

BigGan, Glide, Latent Diffusion, Projected GAN and StarGAN are made
available under the MIT license [48]. This license allows us to use it as long
as we include the copyright notice [40]. For Glide this notice is taken from
https://github.com/openai/glide-text2im?tab=MIT-1-ov-filereadme and is

Copyright (c) 2021 OpenAI Permission is hereby granted, free of charge,
to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute,
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sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions: The
above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

For Latent diffusion, this copyright notice is taken from
https://github.com/compvis/latent-diffusion?tab=MIT-1-ov-filereadme
and says: MIT License Copyright (c) 2022 Machine Vision and Learning

Group, LMU Munich Permission is hereby granted, free of charge, to any per-
son obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, subli-
cense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

For ProjectedGAN this notice is taken from
https://github.com/autonomousvision/projected-gan?tab=MIT-1-ov-filereadme
and says: Copyright (c) 2021 autonomousvision Permission is hereby

granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice
shall be included in all copies or substantial portions of the Software.

For StarGAN this notice is taken from
https://github.com/yunjey/StarGAN?tab=MIT-1-ov-filereadme and says:

Copyright (c) 2017 Permission is hereby granted, free of charge, to any per-
son obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, subli-
cense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

For BigGan this notice is taken from:
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/LICENSE
Copyright (c) 2019 Andy Brock Permission is hereby granted, free of

charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish,
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distribute, sublicense, and/or sell copies of the Software, and to permit per-
sons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

GauGAN uses the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International license which allows us to use it as long as it’s not used for
commercial purposes which we do not do [33].

ProGAN uses the Attribution-NonCommercial 4.0 International license
which allows us to use it as long as it’s not for a commercial purpose which
we do not do [29]. Also credit has to be given: Copyright (c) 2018, NVIDIA
CORPORATION. All rights reserved. A link to the license has to be pro-
vided: https://github.com/tkarras/progressivegrowingofgans?tab = License�
1� ov � file

and the changes we made have to be shown which are that we only use a
subset of the dataset.

Stable Diffusion uses the Apache-2.0 License which allows our usage as
long as we add a copy of the license [11]. The license can be found here

https://github.com/huggingface/diffusers?tab=Apache-2.0-1-ov-filereadme
(added by link to save space).

StyleGan1 uses the Attribution-NonCommercial 4.0 International which
allows us to use it for NonCommercial purposes as long as credit is given
Copyright (c) 2019, NVIDIA CORPORATION [27]. All rights reserved.
Also a link to the license has to be provided:

https://github.com/NVlabs/stylegan?tab=License-1-ov-filereadme
and the changes we made have to be shown which are that we only use a

subset of the dataset. The authors of our dataset only named that StyleGAN
1 uses a Creative commons Public License which is why we use the name of
the license that goes more into detail here.

StyleGan2 uses the Nividia Source Code License which allows us to use
it for Non-Commercial purposes [28]. We also have to add a copy of the
license: https://github.com/NVlabs/stylegan2?tab=License-1-ov-filereadme
(added by link to save space). Should we ever make the dataset public we will
do so under the same license for this subset so this point is also followed. The
License states at the beginning: Copyright (c) 2019, NVIDIA Corporation.
All rights reserved.
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B Appendix -Table of the Abbreviations in the
Figures

Abbreviation Full Name
Big BigGAN
Gau GauGAN
Pro ProGAN
Proj ProjectedGAN
Star StarGAN
Style1 StyleGAN1
Style2 StyleGAN2
Latent Latent Diffusion
Stable Stable Diffusion
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